• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
BoB Biomechanics logo

BoB Biomechanics

Biomechanics of Bodies

  • Home
  • What can BoB do?
  • BoB
  • BoB-4-Biomechanics
  • BoB-4-Ergo
  • BoB-4-EMG
  • Examples
  • FAQs
  • Trial Version
  • Purchase
  • Contact

BoB Features

BoB contains many unique features to enhance productivity, functionality, ease of use, breath and depth of analysis and quality of output. Some of these features are listed below….


Scaling:

BoB users can edit the subject’s height and mass or individual segment dimensions and inertial properties. BoB also contains a muscle editor so muscles can be easily added, modified and deleted.


Simple joint motion:

BoB users can define movement as simple joint angle time histories.

.

Optical motion capture:

BoB acquires movement from optical motion tracking equipment (eg Vicon, Qualisys, BTS) via the C3D file format.

.

IMU motion capture:

BoB contains interfaces to read motion from IMU based motion capture systems (eg Xsens, Perceptron Neuron, Rokoko) and any source that generates BVH files.

.

Part-body analysis and display:

BoB can analyse and display any subset of the whole body so full body motion capture is not required.

.

Muscle labelling:

BoB can label all of the 600 muscles in the muscle model for easy identification. BoB can plot muscle related data including length, contraction velocity, energy dissipation, power consumption and force.

.

Multiple subjects:

BoB can analyse and display an unlimited number of subjects.

.

Trajectories:

The 3-dimensional trajectories of any point on the body can be displayed. The colour change along the trajectory indicates the speed at that position.

.

Plots of relative locations:

The distance between any two locations and the angle between any three locations on the body can be plotted.

.

Ranges of motion:

BoB can display the ranges of motion through which the joint move during a trial or a subset of the trial. The joint angles are reported in a form with physical significance, eg adduction/abduction, extension/flexion.

.

Virtual camera:

A virtual camera can be attached to any body segment to observe motions relative to that segment. In the video to the right a virtual camera is attached to the skull which therefore appears stationary.

.

User graphics and functions:

MATLAB users can incorporate Handle Graphics and bespoke M-code functions into BoB.

.

Instances:

Movement can be studied by creating instances at discrete times or at regular spacings.

.

Velocity vectors:

The velocity vector of any point on the body can be displayed. The velocity vector indicates the speed and direction of motion of the point.

.

Joint torques:

BoB uses inverse dynamics to calculate the torques at all of the joints in the body.

.

Ground reaction forces:

BoB can calculate the ground reaction forces between the feet and the ground in the absence of forceplates which means the whole of the capture area can behave as a very large forceplate. In the video, the calculated ground reaction forces are shown as yellow arrows.

.

External forces:

BoB can apply external forces to any body segment in terms of location, magnitude and direction. In the video to the right, external forces are applied to the hands and shown as yellow arrows.

.

Muscle forces:

BoB can calculate the muscle force distribution within the body. In the video, the more red the muscle, the harder it is working.

.

Joint contact forces:

BoB can calculate force acting at a joint, including the force in the muscles which cross the joint. In the video, the joint contact force at the elbow is indicated by the double arrow indicating the force’s magnitude and direction.

.

Multi-modal with EMG :

BoB-4-EMG provides an environment which can integrate biomechanical analysis and EMG measurement. In the video to the right, the muscles are colour coded based on the rectified EMG signal.

.

Synchronized videos:

BoB can display video synchronized to biomechanical analysis.

.

Bi-variant plots:

BoB can plot any variable against any other variable on a bi-variant plot. In the plot, the right shoulder and elbow angles are being plotted against the racket speed.

.

Output forms:

BoB can output all of its results as 3-dimensional graphics, numeric results as graphs (including bi-variant graphs of variable versus variable), tabulated data in a file suitable for additional processing (.csv), images (.jpg, .bmp, .tiff) and videos (.avi, .mp4).

.

Download free trial version of BoB

BoB-4-EMG is available in a free trial version. The trial version is fully functional and contains pre-defined trials but cannot import new trials.

Download free trial version
BoB Biomechanics logo

Products

  • BoB
  • BoB-4-Biomechanics
  • BoB-4-EMG
  • BoB-4-Ergo
  • What can BoB do?

BoB

  • Purchase
  • Trial Version
  • Examples

Support

  • FAQs
  • Contact
  • Privacy Policy

Copyright © 2021 BoB Biomechanics Ltd | Registered in England & Wales: 10421225 | Registered Address: Nailers Court, Ednall Lane, Bromsgrove, B60 2DA